Pursuing the paper " Capacitated inventory problems with fixed order costs-some optimal policy structure"

Recently, one of my paper was rejected. I forgot to cite one important paper “Capacitated inventory problems with fixed order costs: some optimal policy structure” in EJOR (2000) by Gallego & Scheller-Wolf. Now I am digging into this paper.

This paper characterize some features of the optimal ordering policy for the problem — “capacitated stochastic inventory problem with fixed costs”. It proposes a definition of CK convexity.

This paper is not very long, but is very concise in its wonderful proofs.

In my opinion, the proofs for CK convexity in this paper can also hold for non-stationary demands.

1. Problem description

\(L(y)\) is the expected one-period holding/backorder cost.

\[L(y)=E[h(y-D)^++p(y-D)^-]\]

\(p\) is the unit backorder cost.

\[J(y) = cy+L(y)\]

It can be easily shown that \(J(y)\) is convex. Also assume \(J(y)\rightarrow \infty\) as \(\|y\|\rightarrow\infty\) (for proving the convexity or CK convexity of a induction expression).

The DP(dynamic programming model) of the problem is:

\[f_n(x) = -cx+H_n(x), \qquad 0\leq n\leq N\]

where:

\[\begin{aligned} G_n(y) &= J(y)+\alpha E[f_{n-1}(y-D_n)]\\ H_n(y) &=\inf_{y\in[x, x+C]}\{KI\{y>x\}+G_n(y)\} \end{aligned}\]

\(\alpha\) is the discount factor and \(I\{A\}\) is a unit step function.

2. CK-convexity

CK convex: given a non-negative \(C\) and \(K\), we call the function \(G:\mathbb{R}\rightarrow \mathbb{R}\) CK-convex if for all \(y\), \(b>0\), \(z\in[0, C]\),

\[K+G(y+z)\geq G(y)+\frac{z}{b}\{G(y)-G(y-b)\}\]

Strong CK convex: given a non-negative \(C\) and \(K\), we call the function \(G:\mathbb{R}\rightarrow \mathbb{R}\) strong CK-convex if for all \(y, b>0, a\geq 0\), \(z\in[0, C]\),

\[K+G(y+z)\geq G(y)+\frac{z}{b}\{G(y-a)-G(y-a-b)\}\]

When \(a=0\), strong CK-convex is CK-convex.

Properties of CK-convex:

1.If \(G\) is strong CK-convex, it is also DL-convex for any \(0\leq D\leq C\) and \(L\geq K\). 2.If \(G\) is convex, it is also strong CK-convex. 3.If \(G_1\) is strong CK-convex, and \(G_2\) is strong CL-convex, then for \(\alpha, \beta\geq 0\), \(\alpha G_1+\beta G_2\) is strong \(C(\alpha K+\beta L)\) convex. 4.If \(G\) is strong CK-convex and \(X\) is a random variable such that \(E[\|G(y-x)\|]<\infty\), then \(E[\|G(y-x)\|]\) is strong CK convex.

3.Optimal policy structure

Define the following:

\[G^{\ast}=\inf_{y\in\mathbb{R}} G(y)\] \[S = \inf\{y\in\mathbb{R}|G(y)=G^\ast\}\] \[\tilde{G}(x)=K+\inf_{x\leq y\leq x+C}G(y)\] \[\begin{aligned} A(x)&=\tilde{G}(x)-G(x)\\ s&= \inf\{x|A(x)\geq 0\}\\ s'&=\max\{x\leq S|A(x)\leq 0\} \end{aligned}\]

Clearly \(-\infty\leq s\leq s'\leq S\) (so \(s\) might not exist when it’s \(-\infty\), when \(x<s\), it is always better to order \(C\), when \(x>s'\), it is always better to not order) It is easy to understand \(s\), \(s'\) and the following lemma by drawing a picture.

Also define:

\[\begin{aligned} G_C(x)&=K+G(x+C)\\ \overline{G}(x)&=K+ \inf_{s'\leq y\leq x+C}G(y), \qquad s'-C\leq x\leq s'\\ I_+&=I\{s'-C>s\}\\ I_-&=I\{s>s'-C\} \end{aligned}\]

An important lemma below.

Lemma Under the assumption \(\|S\|\) is finite (guarantee the optimal point exist).

1.\(G\) is non-increasing on \((-\infty, s')\) and strictly decreasing on \((\infty, s)\). 2.\(A(x)\geq 0, \forall x>s'\). (means it’s always not to order when \(x>s'\)). 3.Let

\[H(x)=\inf_{x\leq y\leq x+C}\{K I\{y>x\}+G(y)\}=\min\{G(x), \tilde{G}(x)\}\]

Then,

\[H(x)=\begin{cases} G_C(x), \qquad & x<\min\{s'-C, s\},\\ \min\{G(x), G_C(x)\}I_++\overline{G}(x)I_-\qquad & \min\{s'-C, s\}\leq x<\max\{s'-C, s\}.\\ \min\{G(x), \overline{G}(x)\}, & \max\{s'-C, s\}\leq x\leq s',\\ G(x), & s'<x \end{cases}\]

4.\(H(x)\) is strong CK-convex.

Proof. 1.for any two values \(x_1\), \(x_2\) and \(s'>x_1>x_2\), by strong CK convexity,

Since \(A(x)\leq 0\) when \(x\leq s'\), let \(z^\ast\) be the point where \(G(s'+z^\ast)=\inf_{0\leq z\leq C} G(s'+z )\), so

\[K+ G(s'+z^\ast )\leq G(s')\]

By strong CK convexity,

\[K+G(s'+z^\ast)\geq G(s')+\frac{z^\ast}{x_1-x_2}(G(x_1)-G(x_2))\]

From the above expressions, we can obtain

\[G(x_1)\leq G(x_2)\]

That is, \(G\) is non-increasing on \((-\infty, s')\).

For \(s>x_1>x_2\),since \(A(x)\leq 0\) when \(x< s\), let \(z^\ast\) be the point where \(G(x_1+z^\ast)=\inf_{0\leq z\leq C} G(s'+z )\), so

\[K+ G(x_1+z^\ast )< G(x_1)\]

By strong CK convexity,

\[K+G(x_1+z^\ast)\geq G(x_1)+\frac{z^\ast}{x_1-x_2}(G(x_1)-G(x_2))\]

We can obtain

\[G(x_1)< G(x_2)\]

That is, \(G\) is strictly decreasing on \((-\infty, s)\).

2.By definition, this property is true when \(x\in(s', S]\), when \(x>S\), for any \(z\in[0, C]\), from CK convexity,

\[K+G(x+z)\geq G(x)+\frac{z}{x_1-x_2}(G(x)-G(S))\]

Since \(G(x)\geq G(S)\),

\[K+G(x+z)\geq G(x)\]

This leads to \(A(x)\geq 0\).

3.(1) Since \(x<\min\{s'-C, s\}\), \(x+C\leq s'\), because G is non-increasing in \((-\infty, s')\), \(H(x)=G_C(x)\).

(2) When \(x>s'\), since \(A(x)\geq 0\), \(H(x)=G(x)\).

(3) When \(\max\{s'-C, s\}\leq x\leq s'$, $s'\leq x+C\). \(H(x)\) is the minimum value of \(G(x)\) in the range \([x, x+C]\), so \(H(x)=\min\{G(x), \overline{G}(x)\}\)

(4) When \(\min\{s'-C, s\}\leq x<\max\{s'-C, s\}, x+C<s'\),

if \(s'-C\geq s\), \(s\leq x\leq s'-C\), \(s+C\leq x+C\leq s'\), may order \(C\) or not order, \(H(x)=\min\{G(x), G_C(x)\}I^+\);

if \(s'-C< s, x<s\), always order to the point in \([s', x+C]\), \(H(x)=\overline{G}(x)I^-\).

4.For three values \(x+z, x, x-a, x-a-b\) in the domain.

There are several scenarios according to the values of \(H(x+z)\) and \(H(x-a-b)\). Let \(\Delta\):

\[\Delta=K+H(x+z)-H(x)-\frac{z}{b}(H(x-a)-H(x-a-b))\]

We need to prove that \(\Delta\geq0\).

(1) \(H(x+z)=G(x+z)\), \(H(x-a-b)=G(x-a-b)\).

Since $H(x)=\min{G(x), \tilde{G}(x)}$, $H(x)\leq G(x)$; Similarly, $H(x-a)\leq G(x-a)$, \(\Delta\geq K+G(x+z)-G(x)-\frac{z}{b}(G(x-a)-G(x-a-b))\geq 0\)

The above equation holds from the CK-convexity of \(G\).

(2) There exists \(u_1\in[0,C]$ and $u_2\in[0,C]\), where \(H(x+z)=\tilde{G}(x+z)=K+G(x+z+u_1)\), \(H(x-a-b)=\tilde{G}(x-a-b)=K+G(x-a-b+u_2)\).

\[\begin{align} \Delta=&K+\tilde{G}(x+z)-H(x)-\frac{z}{b}(H(x-a)-\tilde{G}(x-a-b)) \end{align}\]

(a). \(z+u_1\leq C\).

In this situation, \(H(x)\leq \tilde{G}(x+z)\).

     (I) \(-b+u_2> 0\).

     In this situation, \(\tilde{G}(x-a-b)=K+G(x-a-b+u_2)\geq H(x-a)\), so

\[\begin{align} \Delta=&K+\tilde{G}(x+z)-H(x)-\frac{z}{b}(H(x-a)-\tilde{G}(x-a-b))\\ \geq &K\geq 0 \end{align}\]

     (II) \(-b+u_2\leq 0\).

     In this situation, since \(H(x)\leq K+G(x+u_1)\), \(H(x-a)\leq K+G(x-a)\),

\[\begin{align} \Delta=&K+\tilde{G}(x+z)-H(x)-\frac{z}{b}(H(x-a)-\tilde{G}(x-a-b))\\ \geq &K+K+G(x+z+u_1)-K-G(x+u_1)-\frac{z}{b}(K+G(x-a)-K-G(x-a-b+u_2))\\ =& K+G(x+z+u_1)-G(x+u_1)-\frac{z}{b}(G(x-a)-G(x-a-b+u_2))\\ \geq& K+G(x'+z)-G(x')-\frac{z}{b'}(G(x'-a')-G(x-a'-b'))\geq 0 \end{align}\]

where \(x' = x+u_1\geq z\) and \(a'=a+u_1\), \(b'=b-u_2\).

(b). \(z+u_1> C\).

In this situation,

\[\begin{align} \Delta=&K+K+G(x+z+u_1)-H(x)-\frac{z}{b}(H(x-a)-H(x-a-b))\\ \geq & K+G(x+z+u_1)-G(x)-\frac{z}{b}(G(x-a)-G(x-a-b+u_2))\\ \end{align}\]

     (I) \(-b+u_2\leq 0\).

$\Delta\geq 0$ is justified by the similar proof with the above.

     (II) \(-b+u_2> 0\).

In this situation, \(H(x-a)\leq K+G(x-a+u_2)\), \(H(x)\leq H(x+C)\).

\[\begin{align} \Delta=&K+K+G(x+z+u_1)-H(x)-\frac{z}{b}(H(x-a)-H(x-a-b))\\ \geq & K+G(x+z+u_1)-G(x+C)-\frac{z}{b}(G(x-a+u_2)-G(x-a-b+u_2))\\ \geq & K+G(x+z')-G(x+C)-\frac{z'}{b}(G(x-a')-G(x-a'-b))\geq 0 \end{align}\]

where \(z'=z+u_1-C<z\), \(a'=a+C-u_2\).

(3) \(H(x+z)=K+G(x+z+u_1)\), \(H(x-a-b)=G(x-a-b)\).

\[\begin{align} \Delta=&K+K+G(x+z+u_1)-H(x)-\frac{z}{b}(H(x-a)-G(x-a-b))\\ \end{align}\]

Since \(H(x)\leq G(x+u_1)\), \(H(x-a)\leq G(x-a)\).

\[\begin{align} \Delta\geq &K+G(x+z+u_1)-G(x)-\frac{z}{b}(G(x-a)-G(x-a-b))\\ \geq&K+G(x+z)-G(x+u_1)-\frac{z}{b}(G(x+u_1-a-u_1)-G(x+u_1-a-u_1-b))\\ =& K+G(x'+z)-G(x'+u_1)-\frac{z}{b}(G(x'-a')-G(x'-a'))\geq 0 \end{align}\]

where \(x'=x+u_1$, $a'=a+u_1\).

(4) \(H(x+z)=G(x+z)\), \(H(x-a-b)=K+G(x-a-b+u_2)\).

\[\begin{align} \Delta= &K+G(x+z)-H(x)-\frac{z}{b}(H(x-a)-K-G(x-a-b+u_2))\\ \end{align}\]

(a). If \(H(x-a)-K-G(x-a-b+u_2)\leq 0\), since \(K+G(x+z)-H(x)\geq 0(\because z\in [0,C])\), \(\Delta\geq 0\).

(b). If \(H(x-a)-K-G(x-a-b+u_2)>0\),

\[\begin{align} \Delta= &K+G(x+z)-H(x)-\frac{z}{b}(H(x-a)-K-G(x-a-b+u_2)) \end{align}\]

There are two scenarios:

     (I) \(b-u_2\geq 0\).

\[\begin{align} \Delta \geq& K+G(x+z)-G(x)-\frac{z}{b}(G(x-a)-G(x-a-b+u_2))\\ =&K+G(x+z)-G(x)-\frac{z}{b'}(G(x-a)-G(x-a-b')) \end{align}\]

where \(b'=b-u_2\leq b\), \(\Delta\geq 0\) according to the CK-convexity of \(G\).

     (I) \(b-u_2< 0\).

\[\begin{align} \Delta=K+G(x+z)-H(x)-\frac{z}{b}(H(x-a)-K-G(x-a-b+u_2)) \end{align}\]

Since \(H(x-a)\leq K+G(x-a-b+u_2)\), from the assumption \(H(x-a)-K-G(x-a-b+u_2)>0\), we know that $H(x-a)= K+G(x-a-b+u_2)$. ( this condition is very clear, I think it is not very necessary to give a corrigendum in 2016)

\[\begin{align} \Delta=K+G(x+z)-H(x)\geq 0 \end{align}\]

Based on the above scenarios of $H(x+z)$, $H(x-a-b)$ and different bounds of \(H(x)\), \(H(x-a)\), the CK-convexity of \(H\) is justified.




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Pursuing the paper " cash-flow based dynamic inventory management"
  • Lagrangian dual of the mixed integer programming model
  • Digging into the paper "the infinite horizon periodic review problem with setup costs"
  • Operations to preserve convexity----restricted to a line
  • Uniform continuous and ordinary continuous